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Superconducting thin rings with finite penetration depth
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Recently Babaei Brojeny and CleRhys. Rev. B58, 174514(2003] considered superconducting thin-film
rings in perpendicular magnetic fields in the ideal Meissner state with negligibly small magnetic penetration
depth and presented useful analytical limiting expressions and numerical results for the magnetic-field and
sheet-current profiles, trapped magnetic flux, self-inductance, magnetic moment, and focusing of magnetic flux
into the hole when no net current flows in the ring. The present paper generalizes all these results to rings with
arbitrary values of the two-dimensional effective penetration deptin?/d (\ is the London depth and
<\/2 the film thicknespusing a straightforward matrix inversion method. We also present results for the
energy of a superconducting ring as a function of the applied magnetic inditiand the quantum number
N defining the size of the fluxoill ¢, trapped in the hole.
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[. INTRODUCTION washer with a small central hole but with a slit that allows
magnetic flux to enter the hole and causes zero net circulat-
In a recent paper Babaei Brojeny and Clecalculated ing current at the SQUID’s critical curreht:-#The concen-
the magnetic properties of superconducting thin-film ringstration of magnetic flux into this hole increases the effective
and disks in the ideally screening Meissner state when area of the SQUID. _ -
perpendicular magnetic field is applied. They showed that Small disks(or squaresand rings(or loops with linear
the Biot-Savart law for the sheet-current densilyr)  dimensions of the order of a fe@(T), the temperature-
=[92 j(r,2)dz (j is the current densityin a circular disk of ~dependent Ginzburg-Landau coherence length, have been
thicknessd and radiusb with a hole of radiusa (0O<a<b) studied theoretically using the Ginzburg-Landau theory in
can be solved by a physical ansatz containing a fe[c(ln?r Refs. 15-23 and experlm_entally in Refs. 15,16,2_2. A nonlin-
N2 N1—1)2 - . ear theory such as the Ginzburg-Landau theory is needed to
—a“%) (b —r9)] describing the divergence d{r) at the o .
inner and outer radii. A plethora of useful numerical resultshalndle t_he c_ond|.t|ons explored by these authors, i.e., when
X o i o . the applied field is of the order of the bulk thermodynamic
and analytical limiting expressions is given in Ref. 1 for

2 . ) critical field H or the induced current density is of the order
several situationga) magnetic flux trapped in the hole when

ic field | i i flux in th of the depairing current densityy. In such situations the
no magnetic field is appliedj) zero magnetic flux in the o 4o harameter is strongly suppressed and the electromag-

hole yvhen the ring is gubjectgd to an applied field; &r)d _netic response is highly nonlinear. In this paper, however, we
fpcuglng of 'the magnetic flux into the hole when a m.agnethJse a different approach based on the London equfation
field is applied but no net current flows around the ring.  cajculating the electromagnetic properties of a thin-film ring.
Throughout the pap&it was assumed that either the Lon- \we restrict our attention to applied fields much less than
don magnetic penetration depth obeks<d/2 or, if X and induced current densities much less thansuch that
>d/2, the two-dimensional(2D) penetration depthA  the electromagnetic response is linear. The advantage of the
=\?/d (or screening lengf2A?/d) is negligibly small. The  London approach is that it is valid for arbitrary temperatures
same assumption was made in previous work on &iéksxd  below the transition temperatuifie [one needs only to know
rings>® However, while thin superconducting rings with  the temperature dependence of the London penetration depth
=0 ideally screen magnetic flux from penetrating the hole, & (T)] in contrast to the Ginzburg-Landau theory, which is
finite A or A=\2/d>\ will allow magnetic flux to penetrate valid only close toT.
into the film as well as the hole. This effect is much stronger This paper is organized as follows. In Sec. Il we describe
than would be suggested by the exponential factofedp  our calculation method, which applies to arbitrary In Sec.
—a)/\] that applies to long tubes in an axial field. Il we compute the self-inductance of a thin flat ring. In Sec.
The effect of finite A is particularly important for the IV we calculate the response of a ring in an applied magnetic
interpretation of experiments that try to confirm the cosmo-ield. In Sec. V we study the flux-focusing problem and cal-
logical Kibble-Zurek mechanishf of spontaneous formation culate the effective area. In Sec. VI we calculate the energy
of vortices during rapid cooling of a superfluid; some of of a ring as a function of the applied field and the quantum
these experiments use superconducting rihgile others  numberN describing the size of the fluxoid ¢, trapped in
use disks? Finite A also modifies flux focusing, an impor- the ring. In Sec. VII we give some analytical results for the
tant feature of SQUIDgsuperconducting quantum interfer- limit of large A>b, which applies to mesoscopic rings. We
ence devices which usually have roughly the shape of a present a brief summary in Sec. VIII.
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Il. CALCULATION METHOD

We assume for simplicity that current in a circular coil far

from the ring produces a vector potentiél(r)=A,(r)e,

which describes the magnetic inducti@y=VXA,; ¢ is
the azimuthal unit vector. Near the film in the plane0, we

assumeA,(r)=rB,/2, such that the magnetic induction ap-

plied to the thin-film ring isB,= Bai. In response to either

the applied field or a fluxoid trapped in the hole, currents are

induced in the ring. The net magnetic induction Bgr)
=B,(r) +B;(r), whereB;(r)=V X A;(r) and its vector po-

tential A;(r) are generated by the currents in the film. Be-
cause of the circular symmetry, the sheet current in the film

has only ap componentJ(x,y) =J(r)¢. Similarly, the vec-

tor potentialA(X,y,z), defining the total magnetic induction

B=V XA, has only ag component. In the film plane
=0, we haveA(x,y,0)=A(r)¢ and A(r)=A,(r)+As(r).
The current density is related toA via the London equation

j=—As/uoh?, whereA, is the superfluid velocity expressed

in units of vector potential; her&,=Age with

A (r)=A(r)—®;/2m7r. (1)

The second term on the right-hand side is due to the gradient
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j(r’)
4ar|r—r’|

AJ(r)=Mof d’r’ &)
with r=(x,y,z). Integrating this ovez’ and¢, noting thafj
flows only inside the film—d/2<z=<d/2, one obtains in the
planez=0 for each component:

b
AJn(r)=Mof dr'Jn(r’) Q(r,r’) (6)
a
with the integral kernel
Tde r’'cose
Q(r,r')=| 5= 0

027 (r24r'2—2rr'cosg) Y2’

This kernel may be written in terms of elliptic integrals, but
for transparency we prefer a fast direct numerical integration
of Eq. (7); see also Refs. 2—5. High accuracy is achieved by
substituting in the integrap = ¢(u) = ru—sin(mu) and inte-
grating over Gsu<1 using an equidistant grid fou, u;
=(i—12)/N,, i=12,... N,, N,~30-60, with weights
w;=¢'(u)/N,=[1—cos(mu;)]|m/N,:

T 1
Q(r.r’)=J0 d(pf(so)=f0duf[qo(u)]<p’(u)

of the phase of the complex superconducting order param-

eter. For a ring with a slit we treab; as a free parameter to
be determined by boundary conditions, but for an unslitted

ring &, corresponds to the London fluxdifiwhich is quan-
tized; i.e.,®;=Nd¢g, whereN is an integer andby=h/2e is
the superconducting flux quantum.

It is useful to divide the fields into two contributionB,
=B1+B,, A=A1+A,, j=ji1+],, J=J1+J5, etc., where
the subscripn=1 indicates that it is driven by the fluxoid
[driving term Dq(r)=—®¢/27r and A,(r)=A;.(r)], and

N‘P
~i§1 flo(up)]w;. (8)

Writing J,(r)=/dr’J,(r")8(r—r’) and inserting Eq.(2)
into Eq. (6), we obtain

b
Dn(f)=—,U«oJadr’Jn(r’)[Q(r,r’)+A5(r—r’)]- 9

the subscriph=2 indicates that it is driven by the applied (For introduction of finitex into other geometries see Ref.

field [driving term D,(r)=A,(r) and Ay(r)=Au(r)

+Aj(r)]. The London equation for contributiomis
In(r)=—=[Dn(r)+Asn(r) 1/ moA. 2

In this paper we will calculate the two contributions (

=1 and 2 to the magnetic fluxb,(a) through the hole, total

flux @ ,(b) through the ring, magnetic momemt,, and total
currentl , around the ring using the definitions

CI)n(r)=27-rjrdr’r’Bn(r’)=27-rrAn(r), 3
0

mnzwfbdrern(r), Inszern(r). (4)

The relation between the sheet curréptr) and the vec-

25, Formally, the integral equatiof®) may be solved for the
sheet currend(r) by writing

b
Jn<r)=—nalfadr'Dn<r'>K(r,r'>, (10

whereK(r,r") is the inverse of the kernéD(r,r’)+ A S(r
—r'"), defined by

fbdr’K(r,r’)[Q(r’,r”)+A5(r’—r”)]= S(r—r").
(11)

The inverse kerneK(r,r") is easily calculated numerically
by introducing an appropriate grig with weightsw; such
that the integral is approximated by a sum,

N

bdrf(r)~2r f(ry) w;. (12
a =1

tor potentialA;,(r) it generates is obtained as follows. From High accuracy is achieved in the present case, where the

the Maxwell equation ugj=VXB=VXVXA=—V?A
(since hereV-A=0) we obtain the 3D Biot-Savart law for
the current-generated pakg(r) of A:

integrated functionf(r) may have infinities at=a andr
=b, by a grid that is very dense nea+a andr =b. A good
such grid is found by the substitutian=r(u)=a+(b—a)
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X (10u?—15u+6u®), r'(u)=30(b—a)(u—u?)?, yielding
ri=r(y), wi=r"(u)/N,, with u=(>0—-21/2)/N,, i
=1,2,...N,, N,~30-100. This grid defines the vectors
Jni=Jdn(ri), Dpi=Dy(ri), and the matrixQ;;=Q(r;,r;).
Equation(9) then becomes a sufor matrix multiplicatior):

Nr
Dni= _le (W;Qij+ A dij) modn -

13
This is inverted by
Nr
Hodni == 2, KD, (14)
whereKj; is an inverse matrix:
Kij=(wQj;+A &) * (15
(no summation ovei, 5;=1 if i =j; otherwises;; =0). The

matrix equation from which the total sheet current is deter

mined for givenB, and®; thus reads explicitly:

N r ()
- K| ZLB,— —
Hod(ri) = = K|J<28a Zﬂ-rj)' (16)
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0.6 0.8 1 1.2
r/’b
FIG. 1. Profiles of sheet curredi(r) in the ring, perpendicular
magnetic inductionB4(r)=(1/r)(rA;)’, and current-generated
vector potentialA;(r)=A;,(r) in the plane of the ring for the case
of trapped flux and zero applied fiel®{=0, ®;>0, Figs. 1-6.
The hole radius i®=0.4b and the 2D penetration depth As=0
(solid curve$, A=0.03 (dot dashey andA =0.1b (dashed Plot-
ted are the dimensionless quantitibg (®¢/ugb?), By /(D /b?),

Finally, one hint is required without which this method may gng 2a, /(®, /b).

not work or is inaccurate. The matr;; has infinite diago-
nal termsQ;;, sinceQ(r,r’), Eq. (7), diverges logarithmi-
cally whenr approaches’. Namely, one has

ri
~—In—

2 W; ’

17

Qiir1=Q(ri,ri+w)

vector potentialA;(r) for a ring witha/b=0.4 for threeA/b
values(0, 0.03, 0.1 for the case of flux trapping witlB,
=0 and®;>0. One can see that finitd removes the in-
finities of J;(r) atr=a andr=b [J;(r—a) *2 and J,
x(b—r)~Y?% see Ref. ], which lead to a similar infinity of

This problem was dealt with in detail in Refs. 2 and 3, whereBi(r). For A>0, J,(a) and J;(b) are finite, andB,(r)

the optimum choice of th€;; was found first numericalfy

and then analytically,e.g., from the condition that an infinite !

penetrates the superconductor but still exhibits a logarithmic
infinity at r=a and r=b, which is caused by the abrupt

disk ideally screens two coils separated by the disk. One thusimp of J;(r) to zero. Note also that with increasirg the

has the complete definition of the matig; :

Qij=Q(ri,ry), i#]j,

e

In Eqg. (15) the diagonal term isv;Q;; + A. Thus, whenA is
larger than the maximum value of the weight (or the
spacing between grid pointswhich is of order b—a)/N,,
then the choice of th®;; is not critical, and for the compu-
tation of J(r) one may even pu®;;=0. For smallA, how-
ever, the correct choice @;; is important.

1

1677|’i
Qii:E

Wi

(18)

Ill. SELF-INDUCTANCE OF FLAT RINGS

According to Eq(16) the current in a ring originates from
either an applied fiel®,, trapped flux related to the param-
eterd;, or both. In this section we plB,=0 and compute
the sheet currend,(r) for finite trapped fluxoid®;. The
total currentl, is then given by Eq(4). The current gener-
ates a flux®(r)=2=rA(r), Eq. (3), with A;(r)=A;(r)

from Eq.(6). Figure 1 shows the profiles of the sheet current

J4(r), perpendicular inductionB(r)=(1/)(rA;)’, and

total currentl , the magnetic fluxb,(a) in the hole, and the
field B, in the hole decrease while the London fluxoid
27r[A(r) + moAJy(r)]=D; remains constartf

In the case of ideal screening, i.e., for=0, no magnetic
field penetrates the ring material, and thus the fluxr) is
the same for anyr betweenr=a and r=b. The self-
inductance of the ring may then be defined.as®, /1, with
®,=d,(a)=D,(b). For small reduced inner radiua
=a/b<1 the flux trapped in the hole was found by Cfeth
to be ®,(a)=2upaly; thus the inductancé =®, /1, ap-
proached o=2uea. In the opposite limit, for narrow rings

with a—1, L approaches’
L1=woR[IN(8R/W)—2+In4]
=pob(1+a)(tanh 'a—1+1In4) (19
[R=(a+b)/2, w=b—a]. For arbitrarya, but still A=0, L

was computed in Ref. 1, where a useful empirical formula
was presented,

L,=ugb[a—0.197%—0.03ia%+ (1+a)tanh ‘a].
(20)
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=

= magnetic flux in hole
‘éi— divided by fluxoid

0 0.2 0.4 al/b 0.6 0.8 1

FIG. 2. Computed self-inductante= &, /1, of a superconduct- FIG. 3. Magnetic fluxd,(a) in the hole of a superconducting
ing thin flat ring with hole radius and outer radius, plotted in thin flat ring with hole radiusx and outer radiu for the trapped-
units of uea for 2D penetration depthd =0.001, 0.01, 0.03, 0.1, flux case as in Figs. 1—@pplied fieldB,=0 and fluxoid®>0)
and 0.3 in units ob. Note that even very small <b considerably ~ for 2D penetration deptha/b=0, 0.0001, 0.001, 0.01, 0.03, 0.1,
enhances the inductance of rings with a small central hale (0.3, 1, 3, and 10. The dots on some of the curves marktherid
<1) as compared with the cage=0. The circles depict the em- Used here in all such figures.
pirical expressiori20) valid for A=0; they perfectly coincide with
the dots that mark the curve computed for=0. The dashed curve Where ®;=27r(A;+ noAJ;) =const (for a<r=<bh) is the
shows the limiting expressiob;, Eq.(19). See also Fig. 6 below, London fluxoid®*?® We may derive Eq(23) from Eq. (22)
showing the inverse self-inductangga/L . by noting that the constant combinatiomr® A+ uoAJd;)

=®d; can be factored out of the integrand.
This fit is confirmed by our method, as shown in Fig. 2; its  From Eq.(23) and the definitiorE=(1/2)L|§ it immedi-
relative deviation from the exattranges from—0.005% to  ately follows that:
+0.06%.

When the effective penetration depthis finite, the mag- L=d,/l,. (24)
netic field penetrates into the ring material, and the magnetic
flux ®,(r) is no longer constant when changes fronr  This general result, valid for arbitrary penetration depth
=ator=Db. The definition ofL =®, /1, via magnetic fluxis differs from the definition used previouslfor A=0, in that
thus not unique; in particulacp,(a)/l;#®4(b)/1; when  the magnetic fluxpb,(a) through the hole is replaced by the

A>0. In this general case one must use the definitioh of fluxoid &, which coincides with the fludb,(a) in the hole
via the electromagnetic energy of the rin5,=(1/2)LI§. only in the special casa =0.

This energy is composed of the magnetic endfgyand the Equation(23) also may be derived by considering how
kinetic energyE, of the currents, as is evident from the the fluxoid in the ring may be increased from zeradte by
energy integral of London theory: moving vortices(Pearl vortice¥ ~2° of short lengthd) from
the outer radius through the ring into the hole. Each vortex
Mo ; has to cross the current-carrying ring, where a Lorentz force
E=En+Ec="5 | d(H{+\%9), 21 : ying nng,
mtTkT2 f (Hy 1 @) $oJd1(r) acts on it. Integrating this force from=b to r

=a, one obtains the energyyl . Each crossing vortex in-

. 71 . .
= = X .
with Hy=po By andj, =V xHy. The integral2l) overall /o0 o phase change of the superconductor order param-
space can be transformed into an integral over the supercor;

ductor by introducing the vector potential. For a flat ring thiseter ground a C|rc_Ie in the ring by-2and thL.JS Increases the
yields fluxoid by ¢,. Noting that the total current is proportional

to the number of vortices that already are in the hole, one
b obtainsE= (1/2)®¢1,, Eq. (23).
E=En+ Ek:ﬂ'f dr r[J(r)Ag(r)+pmeAdy(r)?]. Figure 2 shows the inductantée=®; /I, for various ra-
a 22) tios A/b=0, 0.001, 0.01, 0.03, 0.1, and 0.3. The circles
show the fit(20), which is an excellent approximation for
From the two energy terms whd),=0 one may define the A =0 and all hole radia. Note thatl increases with increas-
geometric inductance;m=2Em/|§ and the kinetic induc- ing penetration deptih. Even smallA/b=0.001 noticeably
tanceL,=2E, /12, yielding the total self-inductance=L,, enhanced. of rings with a small hole. Figure 3 shows the
+L = 2E/|§ The energyE, Eqg.(22), may also be written as magnetic flux in the holed,(a)=2mwaA,(a), referred to
the fluxoid ®; trapped in the ring. Note thab,(a) may be
E=E,+E=(1/2d;l 4, (23)  much smaller tharb; even for smallA/b. A similar plot,
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[0 00001 0.0003_0.001 0.003=A/b

FIG. 4. Minimum of the magnetic fiel@,(0) occurring in the FIG. 6. Total current ; in the flat ring with trapped flux &,
center of the r|2ng for the trapped-flux casB,E0 and ®;>0) =0 and®,;>0) plotted as the dimensionless ratip= woal, /P;
plotted as Zra“B,(0)/®¢ for A/b=0, 0.0001, 0.0003, 0.001, -, a/L for A/b=0, 0.0001, 0.001, 0.01, 0.03, 0.1, 0.3, 1, 3, and

0.003, 0.01, 0.03,0.1, 0.3, 1, 3, and 10. The dashed curves show thg same data as in Fig. 2 but inverted. The dashed curves show the
largeA approximation, Eq(41), for A/b=1, 3, and 10. largeA approximation, Eq(40), for A/b=1, 3, and 10.

Fig. 4, shows the minimum field in the holB;(0), occur-
ring at the centerr=0 (cf. Fig. 1) plotted as
27a’B,(0)/®;. These curves look qualitatively similar to
®,(a)/d; in Fig. 3. For A=0 and a<b one has

plotted quantityugal,/®; equalsugal/l; however, Fig. 6
shows the entire range<OA <.

2ma’B,(0)/P¢—1. - IV. ZERO-FLUXOID STATE
The magnetic momemh; of this ring (still for B,=0 and
®>0) is depicted in Fig. 5 as the dimensionless ratjp This section considers the zero-fluxoid state reached when

= uomy /bd; ; for further approximations to these curves seea thin superconducting ring is slowly cooled in zero field. A
the dotted and dot-dashed curves in the similar Fig. 12 bemagnetic fieldB,= woH, is then applied, but the fluxoid;
low. The total current, times the inner radiua is depicted in the ring then remains zero. Wheh=0, one has ideal
in Fig. 6 as the dimensionless ratig=uqal,/®;. Actually ~ screening, such that the magnetic fi@(a) in the hole is
Fig. 6 shows the same data as Fig. 2, but inverted, since thzero. For finiteA >0 the screening is incomplete, some flux
leaks through the ring, and the fldk(a) in the hole is no
longer zero. In this section we therefore @Bg>0 andd;
=0 in our numerics. Figure 7 shows for this case the profiles
of J,(r), By(r), and A,(r) for a ring with a/b=0.4 for
A/b=0, 0.03, and 0.1. Note that the inductidBy(r)
changes sign inside the hole and has a negative infinity at the
inner edger=a and a positive infinity at the outer edge
=b. For A=0 the integral ofB,(r) over the hole area is
®,(a)=0, but for A>0 the fluxd,(a)>0.

Figure 8 shows the penetrated fldg(a) in units of its
maximum valuerra®B, reached in the limit ofA>b, and
Fig. 9 shows the field maximuiB,(0) occurring at the cen-
terr =0 of the ring. Both®,(a) andB,(0) increase mono-
tonically with botha and A, but while B,(0) at smalla
increases linearly with the radiug, the penetrated flux
d,(a) at smalla and smallA has negative curvature; see
o 02 0a 00 08 . bottom of Fig. 8. The penetrated flud,(a)/7a’B,

al/b ~B,(0)/B, in the limit of small hole radiuga/b<1 is de-

FIG. 5. Magnetic momenn, of a superconducting thin flat ring picted in Fig. 10 as a function ok/b. This curve is well

with inner and outer radia and b for the trapped-flux cases  ftted by

=0 and ®;>0) plotted as the dimensionless ratia,,

= uemy /bd; for A/b=0, 0.001, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10.

The dashed curves show the laryeapproximation, Eq(42), for P,(a) ~ B2(0) }4_ 1tan!‘( 288 |ré -0 675) (25)
A/b=1, 3, and 10. See also Fig. 12 below. ma’B, B, 2 2 D T
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FIG. 7. Profiles of sheet curredj(r) in the ring, perpendicular A/b=0.03

magnetic inductioB,(r)=(1/r)(rA,)’, and vector potentiah,(r)
in the plane of the ring for the zero-fluxoid state in a finite applied

field (B,>0, ®;=0, Figs. 7-12 The hole radius is=0.4b and
the 2D penetration depth iA=0 (solid curve$, A=0.03 (dot- m
dasheg, or A=0.1b (dasheg, as in Fig. 1. Plotted are the dimen- "
sionless quantitie§, /H,, B,/B,, and—8A,/bB,. L:’,
©

0.08

Figure 11 shows the magnetic momeny of the ring in g"
units of my=—(8/3)b®H,, which is reached for ideally
screening disksg= A =0);2*°the dimensionless ratio plot- 002k
ted is B,=m/m,. For A=0 anda—b one has the limf

mo 3772 (1+a/b)3 0 L L
= . (26) 0 0.2 0.4
My 128 tanh Y(a/b)—1+In4

. . N FIG. 8. Magnetic flux®,(a) in the hole of a flat ring when
Figure 12 shows the total curreht in the ring induced by B,>0 and®;=0 in units o?wazBa for A/b=0, 0.0001, 0.0003,

the applied field, expressed in terms of the dimensionlesg 001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10. The bottom plot
. _ . . _ 15 . i) . il . i) . il by . y i) y .
ratio 8= —1,/bH,. The limits for A=0 aré shows the same data ten times enlarged.

l,=—(4/m)bH, for a—0,

(ml4)(a+b)H,
l[,=— for a—b. (27)
tanh Y(a/b)—1+In4

0.8
Note that the curves in Fig. 12 exactly coincide with the

curves in Fig. 5, even though they depict different physical
guantities for different cases. This identity,,= 3,, can be o°06F
proved by evaluating the sum of energy integréls, ~
= [d%By-By/uo+ [ moh%1-j,, where the first integral &
extends over all space, including the coil producing the ap-®2 o.4f
plied fieldB,, and the second integral extends only over the
volume of the ring. With the help of the vector identity
V- (AXB)=B-VXA—-A-(VXB) with A=A, and B 0.2r
=B,, the divergence theorem, and E®) with n=2, we
can show thaF,,=0. Then, using the same vector identity

but with A=A, and B=B,, the divergence theorem, Am- % 02 0a 06 0.8 1
pere’'s law, and Eqs(2), (4), (6), and (7) with n=1, we a/b
obtain  Fyp=myB,+P¢l,=0, which vyields «ay FIG. 9. Magnetic fieldB,(0) at the center=0 of a thin flat

:M_omllpq’f: — Mol 2/bB=p . This also can be proved ring whenB,>0 and®;=0 in unitsB, for A/b=0, 0.0003, 0.001,
by insertingd; andJ, of Eq. (10) into the definitions4) of  0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10. The dashed curves show the
m,; and |,, renaming the variables—r’, and noting the largeA approximation, Eq(43), for A/b=1, 3, and 10.
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B,(0)/B, ~ ®,a)/ (x a® B,)

% 0.8f
for a/b=0.001 << 1

0.6

, ®,(a)/ (ta°B

« 0.4f

B,(0)/B

0.2

-1 0
1075 /pp 10

10

10

1 2

FIG. 10. Penetrated flux in thin flat rings with small hole radius
a<b for B,>0, ®;=0, plotted vsA/b as ®,(a)/7a’B, (dots,
which in this limit is nearly equal t®,(0)/B, (solid curve and is
well approximated by Eq(25), shown as the dashed curve.

symmetry of K(r,r")=K(r’,r)(r'/r) defined by Eq.11).

This symmetry follows from the symmetry o®(r,r’)

=Q(r',r)(r'/r) defined by Eq.7), from Eq. (11) noting

that (r"/r) 8(r—r")=65(r—r"), and from the additional
property of the inverse kernel thaf2dr'[ Q(r",r’)

+AS(r"—=r")]IK(r",r)=68(r"—r).

V. FLUX FOCUSING

This section considers a ring that is in a perpendicula
magnetic fieldB, and contains a fluxoid; chosen such that
no net current circulates around the ring. This circularly sym
metric situation approximates a ring with a narrow slit along

0.001 “A=0
0.01
0.8k
0.03
06 0.1
o
£
;N m = - (8/3) H p°
0.4}
0.3
02r A/b=
3 N\
0 10 . } —
0 0.2 0.4 0.6 0.8 1
al/b

FIG. 11. Magnetic momentn, of a thin flat ring whenB,>0
and®;=0, plotted as the dimensionless rafig,=m,/m,, where
mo=— (8/3)H,b® for A/b=0, 0.001, 0.01, 0.03, 0.1, 0.3, 1, 3, and
10. The dot-dashed curve shows the lirit-a, Eq. (26). The
dashed curves show the largeapproximation, Eq(44), for A/b
=1, 3, and 10.

r
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"""""""""""""""""""" \\4/1t
1.2 ~
0.01 S 0.003
0.001
| 003 < /0
&
0.1
— 0.8F
fa]
©
T
~.0.6}
_|N 0.3
0.4F ‘\“

0.2 04 ,/p 06
FIG. 12. Total current, in a thin flat ring whenB,>0 and
®;=0 for A/b=0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10,

plotted as the dimensionless rajy=—1,/bH,. The dotted and
dot-dashed curves show the limits, E87). Note that the curves of
Bi=—1,/bH, agree exactly with those in Fig. 5ap

= uom, /bd;, although they describe different physical quantities.
The dashed curves show the laryeapproximation, Eq(45), for

A/b=1, 3, and 10.

one of its radii as proposed by Clem! It neglects both the
magnetic flux in the slit and the effects of the radial currents
that flow in opposite directions alongside the slit. Computa-
tions of thin-film squares and disks with and without slit,
based on the 2D method presented in Ref. 25, show that this
1D approximation is good, yielding magnetic field values in
the hole that are larger by typically 10% or less.

The slit interrupts the currentand allows magnetic flux
to penetrate into the hole such that the conditierD holds.
When B, is increased with ramp ra@B,/dt, a voltageU
appears across the slit at radius U=—-d®d;/dt=
—(dB,/dt)Ags, WhereA.s= P /B, is the effective area of
the slitted ring. In our approximation of a circularly symmet-
ric ring the fluxoid ®; is given by ®;=27r[(r/2)B,
+A;(r)+ peAJd(r)] for anyr in the superconductog=<r
<b, and it equals the parametdr; entering Eq.(2). In a
superconductor without a slitb;=Ng¢, is quantized, with
integerN. When the ring has a radial slit, it may be used to
construct a dc SQUID by connecting the two banks of the slit
to a superconducting current lead via two identical small
Josephson junctions, each with maximum supercurrent
1o.1213 The critical current of the resulting dc SQUID is

=2l 0|COS WBaAeﬂ/(/J)O)L (28)
where the effective area &.4= /B, . Note that the effec-
tive area can be calculated Ags=®(a)/B, (as in Ref. )
only in the limit A=0, when the magnetic flusb(a) in the
hole of the ring is exactly equal to the fluxodle; . The term
“flux focusing” is appropriate becaus@.; is always larger
than the actual area of the holerd?), regardless of the
value of A; moreover,Ay is always in the rangera?®
<Agg<mb2.
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A/b=0,0.0001, 0.0003, 0.001, 0.003,
0.01, 0.03, 0.1, 0.3, 1, 3,10

0 0.2

0.4 al/b 0.6 0.8 1

0 02 0.4 Ojsr/b 08 1 12

] ) ] ) FIG. 14. Reciprocal of the effective ardaq=® /B, of a thin
FIG._13. Prof_lles of sheet curredfr) in the ring, perpe_ndlcular flat ring with 1=0 (flux focusing plotted as rab)/As Vs the

magnetic inductiorB(r)=(1/r)(rA)'m and vector potentiah(r)  yadjus ratioa/b for penetration depths/b=0, 0.0001, 0.0003,

in the plane of the ring for the case of zero total curierd (flux 0001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10. The circles mark the

focusing., Figs. 13-17 The hqle radius isa=0.40 and the 2D parapolic fit, Eq.(29), and the dots nearly coinciding with the

penetration depths are=0 (solid curves, A=0.03 (dot dashey curvesA/b=3 and 10 show the limit — o, Egs.(30), (47).

or A=0.1b (dashegl as in Figs. 1 and 7. Plotted are the dimension-

less quantities/H,, B/B,, and—4A/bB,. this plot is thatA.; increaseswith increasingA for any
given a/b, and that forA#0, A./mab diverges when
When A=0, one has the limifs Ay/(ma?)=  a/b—0, while for A=0 it tends to the finite value 8. For

(8/7%)(bla) for a<b and A/(wa?)=1+(1—alb) fora  A/b<0.03,A/mwab has a minimunisincerab/A. has a
—Db. A good fit valid for alla in the range 8ca<b is (see  maximum) as a function of/b.
Fig. 14 Figures 15, 16, and 17 show the magnetic fibka) in
the hole of the ring plotted a® (a)/wabB,, the magnetic
Ael(ma?)=1a[1+(748—1)(1-2a)2]}, (29 field B(0) in the center of the ring plotted 48(0)/B,]

X (al/b), and the magnetic moment/m,, of the ring for the
with a=a/b. Values of A obtained from this expression flux-focusing casd =0. All three quantities decrease with
d%\l/iate by less than 0.5% from the=0 calculations of Ref, increasingA/b.
1.°% In the limit of large A>b (which may be applicable to
mesoscopic ring°’§’2'33gl one haﬁ[see Eq.(4):5) belc?vs] VI- RING ENERGIES

The energy of a superconducting ring witl®>b was cal-

Al (ma?) = (b*—a?)/[ 2a%In(b/a)], (30 culated in Ref. 33 as a function of the fluxoid numbeand
which is already closely approached farb=1 (see Fig. 5 -0 00007 0.0003 0007
14). S ; i
The condition thatl=1,+1,=0 (or 1,=—1;) yields
Acs=abg,/a,, whereB,=— ugl,/bB,, shown in Fig. 12, 0.8F
was computed in Sec. IV ang, = wpal, /P;, shown in Fig. .
6, was computed in Sec. lll. Figure 13 shows the profiles of = 0.003

J(r), B(r), andA(r) for the case of flux focusing in a ring o ©6

with a/b=0.4 for A/b=0, 0.03, and 0.1. Note that the sheet { oo
currentJ(r) changes sign inside the superconductor and has— 0.03
zero integrall =0. As in Figs. 1 and 7, wheA =0, J(r) T 04 0.1
has inverse square-root infinities eta andr=b, which © 0.3
were treated in Ref. 1, but fok >0, J(a) and J(b) have :
finite values. 02 Alb=1
In Fig. 14 the reciprocal of the effective ar@ay is plot- 130
ted in the formmab/Aq¢, such that the data for all values of
the penetration depth<9A/b<o can be presented in one % 02 04 06 08 1
plot. The curve forA=0 is well fitted by a parabola, Eq. a’b
(29), ranging from7%/8 ata/b—0 to 1 ata/b—1. The FIG. 15. Magnetic flux®(a) in the hole of a thin flat ring with

limiting curve for A/b>1, Eq. (30), is practically reached |=0 (flux focusing plotted as®(a)/wabB, vs a/b for A/b=0,
already whenA/b exceeds unity. The main message from0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10.
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1 The hole contains the fluxoi®;=Nd¢,, andB=B,+B;, as
discussed in Sec. II. The first integral, which extends over all
space, is the total magnetic-field energy, and the second in-

0.8r A/b=0 tegral, which extends only over the volume of the ring, is the
" 0.0003 total kinetic energy of the supercurrents. Using the vector
2 0.001 potential, the divergence theorem, and E@.and (4), we
0.003 .
08¢ 0.01 obtain
- 0.03
@ 0.1 E=E,+mB,/2+ Nyl /2, (32
S04 g . . ) .
o - where EazderBilz,uo is the applied field’s magnetic en-
- % ergy in the absence of the ringy=m; + m, is the total mag-
0.2 L 0.3 netic moment of the ring, anb=1,+1, is the total current
[ 1 around the ring. When the coil currents are controlled so as
y 8 to maintain the magnetic inductidsy, applied to the ring, the
10 . . . .
0 . - . relevant energy is the Gibbs free energy, which we define as
0 02 04 a/p ©° 1 Gn(Ba)=Ea+gn(Ba) =E—W, whereW=mB, is the work

FIG. 16. Magnetic inductioB(0) in the center of a thin flat

ring with 1=0 (flux focusing plotted as[B(0)/B,](a/b) vs a/b

for A/b=0, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10.
The dashed curves show the lar§yeapproximation, Eq(48), for

A/b=0.3, 1, 3, and 10.

done by the power supply in bringing up the magnetic mo-
ment to its final valuem. Thus

gn(Ba) = — MB./2+ Nl /2. (33

Eliminating m and | in favor of the quantities we have de-
fined and calculated in Secs. lI-{\/n;=bNdga, /g, My

the applied magnetic inductidB, . Using the results of the — _(g/3)03H,3,,, 1,=Ndoa,/uoa, l,=—bH.8, L
previous sections, we are able to calculate the energy of & , 5/, | and, =], we may expresgy(B,) in a form

thin ring (d<\) with inner and outer radia andb for any

equivalent to that given in Ref. 33 for the case in which there

value of A. The authors of Ref. 33 also calculated, assumingyre o vortices in the annular regiar<r <b:

A>D, the energy barriers between stabésndN=1 asso-
ciated with the energy cost of moving a vortex or antivortex

In(Ba) = €l (h—N)?+ yh?]. (34

between the inner and outer radii. However, to extend such

calculations to the case of arbitraflyis beyond the scope of

our paper.

The characteristic energy ig = ¢3/2L = ¢p3a,/2umpa. As
can be seen most clearly from Fig. 2, for given values of

We begin by calculating the total electromagnetic energyandb, €, decreases monotonically dsincreases from zero
of the ring-coil system, where the coil produces a perpento « (see Sec. VI accordingly,e, is a monotonically de-

dicular magnetic inductioB, at the ring,

E=J d3r82/2,u0+f d3r won?j2/2.

(31

A/b=0
0.0003

0.8f

0.003

0.001 m, = -(8/3) H_ b°

creasing function of temperature.

The reduced field in Eq(34) is h=B,/B,, where the
scaling field isBy= ¢¢/Agi, With Agg=abp,/«,. SinceB,
is proportional to the reciprocal @& ;, shown in Fig. 14, we
see thaB, decreases from its largest value wher 0 to its
smallest value wher\ =«. While By is a monotonically
decreasing function of temperature, the range of values
spanned byB, is large only for small/b; in a narrow ring

0.01

for which a—b, we findBy— ¢/ 7b?, independent of\.

The constanty in the second term of Eq§34), obtained as
y=x—1=8bBna,/3aa%—1, is shown in Fig. 18. This
N-independent quadratic term is relatively unimportant, how-
ever, because it is only the first term on the right-hand side of
Eq. (34) that determines which quantum st&tdnas the low-
est energy. Figure 19 exhibits a plot oh£N)? vs h
=B,/By for several values oN. From this plot we can see
clearly that the statdl has the lowest energy for values tof
in the rangeN—1/2<h<N+1/2. Whenh=N-1/2, the
statesN andN—1 have the same energy; similarly, whien
1 =N+ 1/2, the state®N andN+1 have the same energy.

The temperature dependenceByf= ¢, /A leads to the

FIG. 17. Magnetic moment of a thin flat ring wheri =0 (flux ~ Possibility that the energetically favored valueimay be
focusing in units of my= — (8/3)H b3 for A/b=0, 0.0003, 0.001, higher close td;, whereA diverges, than at lower tempera-
0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10. The dashed curves show thiéres, where\ is much smaller. This effect, which may have
largeA approximation, Eq(49), for A/b=0.3, 1, 3, and 10. important consequences for experiments using small super-
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1 o
ogp Alb=e
10
3
=
~ 1
- 0.3
1 08F o3
+
=
o4}
- 0.03
0.01
0.003
0.2 0.001
0
% 02 04 06 03 1
: 4 a/p :

FIG. 18. Coefficienty of h?=(B,/Bg)? in the N-independent
part of the energy of a superconducting ring in an applied fise
Eq. (34)], plotted as 1/¢+1)=1/y to show the entire range of 0
<a/b=<1. The dots mark the limi\ —«, Eq. (51).

conducting rings, is greatest whafb is small. For example,
suppose thaa=0.1b. At high temperatures for which/b
>1, we see from Fig. 14 thah.4~0.2wb?, such thatB,
~5¢o/mb2. In an applied field oB,~3¢,/7b?, h~0.6,
and the energetically favored stateNs=1. If at low tem-

PHYSICAL REVIEW B69, 184509 (2004

and hence increases Bg increases. However, since the in-
tervortex spacing for an infinite thin film in an applied mag-
netic inductionB, is of the order of ¢,/B,)*? we expect
that it will first become energetically favorable for a vortex
to sit in the middle of the annular region, rather than to enter
the hole and increase the value ®f when B,=B;

~ ¢o/W?, wherew=b—a. As pointed out in Ref. 33, for
narrow rings [w<(b—a)] when A/b>1, By
~(2¢o/ mW?)In(2wi ), whereé is the coherence length or
vortex-core radius.

VII. LIMIT OF LARGE PENETRATION DEPTH

In the limit A/b>1, which can be realized in small me-
soscopic ring$;:3232 analytic expressions for many of the
guantities of interest can be obtained from perturbation
theory. To lowest order in the small paramebtén, we may
neglect the current-generated contributidp to the vector
potentialA in the London equation. From Eq4) and(2) we
thus obtain the sheet-current density

Jr)— 1 /(& 1 B
(r)_,qu 27Tr_§r a
From Egs.(4) and the Biot-Savart law we then obtain the

magnetic momenin, total currentl, and magnetic induction
at the center of the hole(0) generated by this current:

(35

peraturesA/b<0.01, thenA.4~0.17b?, about half that at T Py, . By,

high temperatures. Since the corresponding valudpfs m= oA E(b —a’)- E(b —a)|, (36)

then about twice that at high temperaturks;0.3, and the

guantum number for the state with the lowest energy be- 1 [P (b} Ba, , ,

comesN=0. |=m >Nz~ 7 (b*=ad)), (37)
We emphasize that Eq34) gives the energy of a ring

with fluxoid numbem in the hole when there are vortices 1 [®; (b—-a) B,

in the annular regiom<r<b. It also states that the ener- b(0)= ﬁ{ﬂT_ 7(b—a) . (38

getically favored value ofl is approximately equal tB, /B

4 A
/\ /é\\ // //\\

(h-N)?

FIG. 19. N-dependent part of the energy of a superconducting

ring in an applied fieldsee Eq.(34)], plotted as f—N)? vs the
reduced fielch=B,/B.

For the casB,=0 and®;>0, the self-inductancé is
obtained from Eqs(24) and (37). Expressind. in terms of
the same ratio as shown in Fig. 2, we obtain

L B A 21
noa | b/(a/b)in(b/a)’

The inverse self-inductance, expressed as the dimensionless
ratio shown in Fig. 6, is

(39

_Molla_Moa 1 (b a

YT, T L 27 A)lD

Expressing the magnetic fieB) (0) at the center of the ring
in terms of the same ratio as plotted in Fig. 4, we obtain

In

b
S )

b

A

27a’By(0) 1

D, 2

a1
o/l 5/

The magnetic momemh, expressed as the same dimension-
less ratio plotted in Fig. 5 is

_Moml_l(b
T bd;  4\A

a
(41

a2

~|p (42)

am
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For the zero-fluxoid case, we obtain the magnetic induc- Finally, we calculate the quantities of interest for ring en-
tion B,(0) at the center of the ring by settifg;=0 and ergies, discussed in Sec. VI. Wharib> 1, the characteristic
addingB, to Eq. (38). Expressing the result in terms of the energy,eo= ¢3/2L = pja, /2102, becomegsee Eq(40)]
same ratio as plotted in Fig. 9, we obtain

B,(0) 1( b) _ ¢gin(b/a)

(43) €0~ 47T/.L0A ’

a (50)

"B, =~ 4\A b/
The corresponding magnetic moment is obtained from Edyhich agrees with that found in Ref. 33, allowing for the
(36) with @¢=0. Expressing the result in terms of the sameyjfterent system of units and definition df used there. For

dimensionless ratio as plotted in Fig. 11, we obtain large A, the quantityy=y—1=8bSa,/3aa’—1 appear-
’ m
ing in Eqg.(34) becomes

m, 3w[b a\?
ﬁm—m—o = a(x b (44)
. . . . 1+ (a/b)?
The total current in the ring is obtained from Eg§7), again y=———In(b/a)—-1, (51
with ®;=0. Expressing the result in terms of the same di- 1—-(a/b)?
mensionless ratio as plotted in Fig. 12, we obtain
in agreement with Ref. 33.
_ l, 1 b 1- a\? 45 Although the results presented in this section should apply
b= bH, 4\A b (49 only when A/b>1, comparison of the above expressions

. . . with the numerical results show that they provide good ap-
This result is the same as that in B42), as expected from proximations already wheA/b=1 and yield excellent re-

the identity «,,,= B, , proved garlier. _ _ sults whenA /b= 3.
For the case of flux focusing, we obtain the effective area

A= D /B, by settingl =0 in Eq.(37). The result is
VIIl. SUMMARY
B m(b*-a?)
= Zinba) (46) In this paper we presented a straightforward matrix-
«a n(b/a) . . .
inversion method for the solution of the sheet current, vector
ExpressingAq in terms of the same ratio as plotted in Fig. potential, and magnetic field generated by a thin-filch (
14, we obtain <\/2) superconducting ringnner and outer radia andb)
containing a trapped fluxoid; in a perpendicular applied
mab a 2(a/b)In(b/a) 4 magnetic inductiorB,, for values ofA =\?/d ranging from
Acit _WE_ 1—(a/b)? (47 zero to infinity. We used this method to calculate magnetic-
) o ) field, current-density, and vector-potential profiles and nu-
The corresponding magnetic induction at the center of thenerous related physical quantities for three important cases:
ring B(0) is obtained by addiny(0) [Eq. (38)] to B, but (i) &,>0 butB,=0 (trapped fluxoid, indexn=1), (ii) B,
using Eq.(37) and 1=0 to eliminate®. Expressing the >0 put ®;=0 (zero-fluxoid state, index=2), and (iii )
result in terms of the same ratio as plotted in Fig. 16, wep,>0 andB,>0 but no net current around the rirffux

Aeff: ab

obtain focusing. We also calculated the Gibbs free energy of the
202 ring as a function of the quantum numbgl where N
io)gz EJF E E) 1— a M_ a . (498 =®d¢/¢y, and the applied magnetic inducti@), when no
Ba b b 41A b/l 2In(b/a) b vortices are present in the annular region betwaemd b.
The corresponding magnetic moments obtained from Eq.
(36), using EQ.(37) and =0 to eliminated;. Expressing ACKNOWLEDGMENTS
the result in terms of the same ratio as plotted in Fig. 17, we
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